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ABSTRACT

1. Introduction

Deepwater hydrocarbon exploration in the Niger Delta presents formidable challenges, characterized by complex
geology, significant overburden pressures, high drilling costs, and substantial risks associated with wellbore
instability and sand production [1,2]. The Agbami Field, a major deepwater turbidite reservoir situated in the
central Niger Delta (Nigerian Offshore Block OML 127/128), exemplifies these challenges. Discovered in 1998
and brought on stream in 2008, Agbami produces from a series of Miocene-aged stacked, unconsolidated sand
bodies draped over a prominent northwest-southeast trending anticline, sealed by interbedded shales and marls
[3,4]. Accurate characterization of reservoir geomechanical properties is paramount in such settings, not only for
mitigating drilling hazards but also for optimizing completion designs, predicting production-induced compaction,
and managing reservoir performance over its lifecycle [5,6]. Figure 1 shows the location of the Agbami Field in the
Niger Delta Deepwater Province.

Geomechanical parameters—including Poisson's ratio (v), Young's modulus (E), bulk modulus (K), shear modulus
(G), and Unconfined Compressive Strength (UCS)—are fundamental controls on rock behaviour. Traditionally,
these properties are derived from laboratory tests on core samples or estimated from wireline logs (sonic, density,
neutron) using empirical correlations [7,8]. However, core acquisition in deepwater environments is expensive and
often limited spatially and temporally. Log-based estimates, while valuable, are confined to wellbores, leaving vast

inter-well regions uncertain. Seismic inversion offers a pathway to extrapolate elastic properties away from wells,
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but translating these into geomechanical properties and UCS often relies on simplified, potentially regionally

inaccurate, empirical models [9]. Figure 2 shows typical geomechanical parameters influencing reservoir behavior.

0P 21 a'_
Agbami - 1 ‘ﬁe’w
o o l
i
/ Km D 50

Figure 1. Location of the Agbami Field in the Niger Delta Deepwater Province
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Figure 2. Typical Geomechanical Parameters Influencing Reservoir Behavior

The advent of machine learning (ML) offers a transformative approach to subsurface characterization. ML
algorithms, capable of learning complex, non-linear relationships from high-dimensional datasets, present
significant potential for enhancing the prediction and spatial modelling of geomechanical properties [10,11]. By

integrating diverse data sources—well logs, core measurements (where available), and 3D seismic attributes—ML
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models can potentially provide more accurate and robust predictions of geomechanical parameters across the
reservoir volume than traditional empirical methods alone. Figure 3 shows the machine learning workflow for

geomechanical property prediction.
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Figure 3. Machine Learning Workflow for Geomechanical Property Prediction

This study aims to bridge the gap between conventional geomechanical analysis and advanced data-driven
techniques. Our primary objective is to develop and apply an integrated workflow utilizing machine learning for the
prediction of key geomechanical properties (v, E, K, G, UCS) within the deepwater Agbami Field reservoir
interval. We leverage a comprehensive dataset comprising wireline logs from multiple wells and a 3D seismic
volume. The novelty of this work lies in the tailored integration of ML techniques specifically for geomechanical
characterization within the challenging deepwater Niger Delta context, using the prolific Agbami Field as a
detailed case study. We demonstrate how this approach can provide a more comprehensive understanding of
reservoir geomechanical heterogeneity, ultimately contributing to safer drilling operations, optimized completions,
and improved reservoir management.

1.1. Study Objectives
This subsection lists the specific objectives of the study:

1. To establish reliable log-derived geomechanical properties using established empirical correlations calibrated
where possible.

2. To develop, train, and validate robust machine-learning regression models (e.g., Random Forest and artificial
neural networks) for predicting geomechanical parameters from logs and seismic attributes.
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3. To generate spatially continuous 3D models of geomechanical properties and UCS by integrating ML

predictions with geostatistical methods.

4. To analyze the spatial variability and uncertainty of predicted properties and assess their implications for field

development and risk mitigation.

5. To provide actionable recommendations for drilling and completion design based on the 3D mechanical earth

model.
6. To propose targeted data acquisition strategies to reduce uncertainty in high-risk zones.

The novelty of this work lies in the tailored integration of ML techniques specifically for geomechanical
characterization within the challenging deepwater Niger Delta context, using the prolific Agbami Field as a
detailed case study. We demonstrate how this approach can provide a more comprehensive understanding of
reservoir geomechanical heterogeneity, ultimately contributing to safer drilling operations, optimized completions,

and improved reservoir management.
:7 2. Theoretical Background

Accurate prediction of geomechanical properties requires a robust foundation in rock mechanics principles and
modern data-driven methodologies. This section establishes the theoretical framework underpinning the integration

of geomechanics and machine learning for reservoir characterization [12].
2.1. Geomechanical Parameters
2.1.1. Definitions and Physical Significance

e Poisson's Ratio (v): Ratio of lateral to axial strain under uniaxial stress; controls volumetric response, fracture

aperture, and rock dilatancy [5,6].

e Young's Modulus (E): Ratio of axial stress to axial strain; quantifies rock stiffness and resistance to

deformation under load [13].

e Bulk Modulus (K): Ratio of volumetric stress to volumetric strain; indicates resistance to uniform

compression and closely relates to pore-pressure evolution [14].

e  Shear Modulus (G): Ratio of shear stress to shear strain; governs rock's resistance to shear deformation,

critical for fault reactivation and fracture propagation analysis [6].

e Unconfined Compressive Strength (UCS): Maximum axial compressive stress a specimen can withstand

without lateral confinement; a key threshold for borehole collapse and hydraulic fracture design [15].
2.1.2. Empirical Correlations and Limitations

Wireline logs remain the workhorse for deriving geomechanical parameters when cores are sparse. Common

correlations include [7,8]:
Elastic Modulus (E) from sonic logs:
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o Y A2 7
(1 — v) .-l.iP At (1)
Where:

- E: Young’s modulus, a measure of rock stiffness under axial load (GPa). - p: Bulk density, mass per unit volume
of the rock (g/cm3). -v: Poisson’s ratio, the ratio of lateral strain to axial strain under load (dimensionless). - At,:
Compressional (P-wave) transit time, time for a P-wave to travel one foot of formation (us/ft). - At,: Shear (S-wave)

transit time, time for an S-wave to travel one foot of formation (us/ft).

Poisson’s ratio (v) from sonic logs:

0.5 (At,/At,)* —2
(At,/At)? — 1

v —
(2)
Where:

- v: Poisson’s ratio (dimensionless). - At,/Ats: Ratio of P-wave to S-wave transit times (unitless).

e UCS from Sonic and Density: Empirical models often regress UCS against dynamic Young’s modulus or

combined log metrics (e.g., At,, density) [16].

e Porosity—Modulus Relationships: In unconsolidated sands, relationships between porosity (from

neutron/density logs) and elastic moduli can be calibrated against limited core data [17].

Limitations [18]: Scale Discrepancy: Logs sample decimeter intervals; coring is centimeter-scale; seismic is
meter-scale. Empirical Bias: Correlations derived in one basin may not transfer to another without recalibration.

Heterogeneity: Simplified models assume homogeneity within layers, ignoring facies changes and diagenetic

variations.
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Figure 2.1. Workflow for Log-Derived Geomechanical Correlations

Schematic showing input logs, correlation equations, and output moduli/UCS logs.
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2.2. Seismic Inversion for Elastic Properties
2.2.1. Principles of Elastic Impedance Inversion
e Acoustic Impedance (Al): Al=p-V,; derived via model-based inversion of pre-stack seismic data [19].

e Shear Impedance (SI): SI=p-V,; obtained from joint PP-PS inversion or converted from Al with empirical

Poisson’s ratio [20].

e Conversion to Moduli: Bulk and shear moduli (K, G) are computed from Al and SI volumes [21].
2.2.2. Benefits and Challenges

o Spatial Coverage: Extends property estimates between wells.

e Resolution Limits: Seismic bandwidth (~10-80 Hz) smooths high-frequency variations critical for
geomechanics.

e Model Uncertainty: Inversion depends on low-frequency model, well ties, and assumed wavelet—errors
propagate into moduli.

\ \
v:'-,‘_ ‘ \ \
-rea vt ! : | ..‘u‘
= 5 \ |
Data Audit Wel Mechanical Overburden Pore
Summary Stratigraphy Stress Pressure
e
}{ ramm AVRN ©
_‘ ..,
Mechanical Stress Minimum Maximum Failure
Properties Direction Stress Stress Analysis

Figure 2.2. Example P-Impedance and S-Impedance Volumes

Side-by-side slices showing how Al and Sl vary across a faulted interval.
2.3. Machine Learning in Geosciences

2.3.1. Overview of Key Algorithms

Avrtificial Neural Networks (ANN):

O

Multi-layer architectures capture non-linear mappings.

o Require normalization, activation choices, and dropout/regularization to prevent overfitting [11,23].

Random Forest (RF):
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o Ensemble of decision trees; handles mixed data types, missing values, and ranks feature importance inherently
[10, 24].

e Support Vector Regression (SVR) & Gradient Boosting (GBM):

o SVR offers robustness in high-dimensional but small-sample datasets; GBM yields strong accuracy at cost of

interpretability [25].
2.3.2. Data Preparation and Feature Engineering

a. Data Merging: Combine multi-well logs, core measurements, and extracted seismic attributes (e.g., amplitude,

coherence, curvature) [26].
b. Cleaning: Remove outliers, fill gaps (e.g., via kriging for logs or patch-based methods for seismic) [27].

c. Feature Selection: Use correlation matrices, recursive feature elimination, and RF importance to prune

redundant or noisy predictors [28].
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Figure 2.3. Flowchart of ML-Driven Geomechanical Prediction Workflow

Visual guide from data preprocessing through model application and spatial mapping.
2.3.3. Model Training, Validation, and Uncertainty
e Train—Test Split: Typically 70/30 or k-fold cross-validation to gauge generalization [29].

e Hyperparameter Tuning: Grid search or Bayesian optimization for tree depth, number of neurons, learning
rate, etc. [30].

e Uncertainty Quantification:
o Ensembles: Use multiple RF or ANN realizations to derive prediction intervals.
o Bayesian Neural Nets: Provide posterior distributions for each estimate [31].

2.3.4. Spatial Integration with Geostatistics
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e Co-Kriging with Seismic Attributes:
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o Incorporate high-resolution seismic predictors as secondary variables to improve property continuity [33].

“7 3. Materials and Methods

This section details the integrated workflow applied to the Agbami Field, including data acquisition, petrophysical

processing, geomechanical derivation, machine learning implementation, and 3D modeling procedures [34].

3.1. Study Area and Data Sources

3.1.1. Agbami Field Geology

The Agbami Field (OML 127/128) is located on the western flank of the Niger Delta deepwater province in water

depths of 1,280-1,646 m. Reservoir sands are Miocene-age turbidite lobes deposited on a northwest-southeast

anticline, capped by interbedded shales and marls [3, 35]. Structural interpretation of the time-migrated 3D seismic

volume delineated fault blocks and key stratigraphic horizons, providing the geometric framework for subsequent

petrophysical and geomechanical analyses [36].

3.1.2. Well Log Data

Seven wells (Agb 1 through Agb 7) were selected. Acquired logs include gamma ray (GR), bulk density (pb),

neutron porosity (®N), compressional (Atp) and shear (Ats) sonic, and caliper. Logs were depth matched,

environmental corrected, and cleaned of washout intervals using industry-standard protocols [37,38].
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Workflow for integration of raw well logs into quality-controlled inputs for geomechanical parameter estimation.
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3.1.3. Core Measurements
Core plugs from wells Agb-3 and Agb-5 (2-inch diameter) were tested for Young's modulus, Poisson's ratio, and
UCS under dry and saturated conditions following ASTM D7012-14e1l standards [39]. These laboratory results

calibrated the empirical log-derived correlations.

3.1.4. Seismic Data
A post-stack time-migrated 3D seismic volume (25 m inline/crossline spacing) was used. Checkshot ties ensured
alignment between log-derived impedance and seismic [40]. Pre-stack inversion generated P-impedance (Al) and,

via joint PP-PS inversion, S-impedance (SI) using Hampson-Russell software [41].
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Figure 3.2. Prestack Seismic Inversion Workflow

Workflow outlining prestack seismic inversion steps to derive P- and S-impedance volumes
3.2. Petrophysical and Geomechanical Workflow
3.2.1. Log Processing and Quality Control

1. Depth Matching: Align all logs to a master depth scale across wells using Schlumberger's TechLog software
[42].

2. Environmental Corrections: Correct density and sonic logs for borehole rugosity and mud effects using the
Schumberger SNUPAR algorithm [43].

3. Porosity Computation: Compute total porosity (@) using density-neutron crossplot methods [44].
3.2.2. Empirical Geomechanical Calculations
Stage 1: Compute Elastic Moduli

Step 1.1: Gather input logs (At,, Ats, pp) [7].
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- At,: P-wave sonic transit time (us/ft)
- Ats: S-wave sonic transit time (us/ft)
- pp: Bulk density (g/cm?)

Step 1.2: Calculate Young’s modulus (E) and Poisson’s ratio (v) using sonic-derived equations [45].

Use the standard elastic relations applied to At,, At,, and pg.

* E (Young’s modulus) reflects the stiffness of the rock—how much it deforms under axial stress.
v (Poisson’s ratio) quantifies lateral expansion when compressed axially.

Stage 2: Convert to Bulk and Shear Moduli

Step 2.1: Apply conversion formulas

Kk-_ Y - _F
3(1 — 2v) 2(1 4 v) @3)

Standard rock physics relationships [46]

- K: Bulk modulus—resistance to uniform compression.

- G: Shear modulus—resistance to shape distortion at constant volume.
Stage 3: Estimate Unconfined Compressive Strength (UCS)

Step 3.1: Define regression model

UCS = a + b Eyyn + c Aty @)

- UCS: Peak axial stress the rock can withstand without confinement (MPa).
-a, b, c: Regression coefficients determined from laboratory measurements.

- E.ya: Dynamic Young’s modulus derived from sonic and density logs (GPa).
- At,: P-wave sonic transit time (us/ft).

Step 3.2: Fit linear regression

» Use laboratory UCS data and corresponding E.y., At, values.

» Solve for a, b, ¢ to minimize prediction error.

3.2.3. Well-to-Seismic Upscaling

Log-derived properties were interpolated onto the seismic grid using nearest-neighbor mapping, then co-kriged

with impedance and coherence attributes to produce continuous volumetric models [48].

3.3. Machine Learning Model Development
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3.3.1. Data Preparation

Combine log-derived parameters (E, v, K, G, UCS) and seismic attributes into a unified dataset for the seven wells.
Randomly split into training (70%), validation (15%), and test (15%) sets, stratified by well to evaluate spatial

generalization [49].
3.3.2. Feature Selection

Compute a Pearson correlation matrix to remove highly colinear predictors. Apply recursive feature elimination

(RFE) with a Random Forest base estimator to select the top 10 inputs for each target variable [28].
3.3.3. Model Architectures and Hyperparameter Tuning

A. ANN: Keras implementation with TensorFlow backend [50].Three hidden layers (50-30-10 neurons), ReLU

activations, dropout = 0.2, trained with Adam optimizer.
B. Random Forest: 200 trees, max depth 5-20, min samples leaf 5-20.

Hyperparameters were optimized via grid search with five-fold cross-validation on the training set, targeting

minimum RMSE. Scikit-learn library with grid search [51].

Data Split 5%
Raw - Processed
i Data - Data

Figure 3.3. Machine Learning Model Development Workflow
Flowchart of data preprocessing, feature selection, model training, and validation steps.

3.3.4. Model Validation and Uncertainty

Evaluate final models on the test set using RMSE, R?, and MAE. Quantify predictive uncertainty via ensemble
methods: generate 30 bootstrap realizations of RF and compute prediction intervals.
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3.4. 3D Geomechanical Modeling
3.4.1. Volumetric Property Prediction

Apply the selected ML models to every seismic trace to predict E, v, K, G, and UCS at seismic resolution

(25 m x 25 m x 4 ms) using Python-based automation [52].
3.4.2. Geostatistical Simulation

Use Sequential Gaussian Simulation (SGS) to integrate ML predictions with well control, employing a nested

variogram model (ranges at 500 m and 1,000 m).
3.4.3. Uncertainty Mapping

Produce 50 equiprobable SGS realizations; calculate voxel-wise standard deviation to generate uncertainty maps
for each parameter [53].

4. Results

This section presents key findings from the integrated analysis of the Agbami Field, with respect to the four study
objectives including derived geomechanical properties, machine learning performance, 3D Property Modeling and

spatial distribution maps [54].
4.1. Calibration of Log-Derived Geomechanical Properties (Objective 1)

From the seven calibration wells, we computed Young’s modulus (E), Poisson’s ratio (v), bulk modulus (K), shear

modulus (G), and UCS using depth-corrected logs and empirical correlations calibrated against core data [47,55].

Table 4.1. Log-derived versus laboratory values after linear calibration

Property Log-Derived Mean Core Mean Bias (%)
Young’s Modulus, E (GPa) 8.30 8.05 +3.1
Poisson’s Ratio, v 0.279 0.275 +1.5
Bulk Modulus, K (GPa) 13.0 12.7 +2.4
Shear Modulus, G (GPa) 3.25 3.15 +3.2
UCS (MPa) 33.0 318 +3.8

Calibration reduced mean bias to below 4% for all parameters, demonstrating reliable log-derived property

estimation [56].
4.2. ML Model Development and Validation (Objective 2)

We trained Random Forest (RF) and Artificial Neural Network (ANN) models on 70% of the calibrated dataset,
validated on 15%, and tested on the remaining 15% [57]. Figure 4.1 shows the RF model’s cross-plot for measured
versus predicted Young’s modulus on the test set. The RF achieved R?=0.92 and RMSE =0.80 GPa; ANN
achieved R?=0.90 and RMSE = 0.88 Gpa [58].

ISSN: 2582-5267 [142] OPEN (J ACCESS



AJBSR

Asian Journal of Basic Science & Research
Volume 7, Issue 3, Pages 131-154, July-September 2025

J(iUEN;AL
() Gradient boosting Aceuracy comparisan for test data regrossion
35 = .
: - [ —
0 ¢ o~ Cradient BRMSE (MPa)
- a.-“" boosting BMAE (MPa)
£ st ; ’ 3
i 10 & _.-""II
Y " .'d'll'.b
o
5 = 2%
Er:i'ﬁ Elsstic met T2
o -
5 . T T T T T I' T ¥ L T ¥ T T T
=4 o 4 10 i M P ] i 3% no 0 X0 30 40 540 &0 Y0 &0 40
Measred o (MPa)
(b} Kandom [orest (&) Elasilie met
LL 15 .
10 ,-*"HI LR & ,.-""IJ
.'r-l-l 9 -~ I
i5 - _ is I Pl
z BT ° o d *l s % 20 £ - =
E’ ."Fa o :‘F s .3 = e d .
L] 15 P - A
E . E “a & & o -
g 10 'f'__!""' g L L = 5
Iowe NS
0 A 'R .-p-'a o
1 2’ + + 4 $ 4 4 -3 “"':q": L S e e
I T BT W s I 35 S @ £ 10 15 I 35 W IS
Measured o (MPa) Miasurid g, [MPa)
Figure 4.1. Cross-plot of measured vs. RF-predicted Young’s modulus (test set)
Table 4.2. Overall performance
Property RF R2 RF RMSE ANN R? ANN RMSE
E (GPa) 0.92 0.80 0.90 0.88
N 0.88 0.017 0.86 0.019
K (GPa) 0.91 1.10 0.89 1.18
G (GPa) 0.89 0.40 0.87 0.43
UCS (MPa) 0.93 7.5 0.91 8.2

4.3. 3D Property Modeling (Objective 3)

RF predictions were applied to every seismic trace and upscaled through Sequential Gaussian Simulation (SGS) to
honor well control and spatial structure [32, 59]. Figure 4.2 displays a 3D mechanical earth model view of Young’s
modulus distribution across the reservoir top, highlighting high-stiffness sand lobes (> 10 GPa) and lower stiffness
shaley zones (< 6 GPa) [60].
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Figure 4.2. 3D mechanical earth model: lateral distribution of Young’s modulus (GPa)
4.4. Spatial Variability and Implications (Objective 4)

To quantify uncertainty, we generated 50 SGS realizations for Poisson’s ratio and computed voxel-wise standard
deviation [53,61]. Figure 4.3 shows the uncertainty map at a representative depth slice. Elevated o(v) up to 0.06
occurs near major fault zones and in regions without well constraints[62]. This spatial insight informs
drill-placement risk: areas of high uncertainty warrant additional data (e.g., sidewall cores) or conservative design
choices [63].

s ’ Amplitude
o il discontinuities

Figure 4.3. Standard deviation map of Poisson’s ratio (50 SGS realizations)
4.5. Summary of Findings
o Objective 1: Log-derived properties calibrated to core data with <4% bias [64].

¢ Objective 2: RF and ANN models predict geomechanical parameters with R > 0.88 [65].
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e Objective 3: Continuous 3D models delineate heterogeneity at seismic resolution [66].

o Objective 4: Uncertainty mapping highlights high-risk zones for well planning and risk mitigation [67].

275, Discussion and Interpretation of Results

In this section, we synthesize our findings with respect to the four study objectives, interpret the implications for

reservoir development in the Agbami Field, and highlight limitations and recommendations for future work [68].

5.1. Calibration of Log-Derived Geomechanical Properties

Objective 1 Review: We achieved log-derived estimates of E, v, K, G, and UCS calibrated to core measurements

with mean biases below 4 % [69].

o Implication: Such low bias confirms that our empirical correlations, once tuned with limited core data, can

reliably extend mechanical property estimation to uncored intervals [70].

o Interpretation: The calibrated log-derived properties form a robust basis for both ML training and

geostatistical modeling, ensuring physical fidelity in subsequent 3D predictions [71].
5.2. ML Model Performance and Predictive Capability

Objective 2 Review: Both Random Forest (RF) and Artificial Neural Network (ANN) models delivered high
predictive accuracy (R?>0.88) and low RMSE for all target parameters. RF consistently outperformed ANN by a

small margin [72].

e Implication: The ensemble nature of RF provides robustness to noisy input features and limited training

samples, making it preferable for this context [73].

o Interpretation: High test-set performance indicates that the selected features—combining conventional logs
and seismic attributes—capture the dominant controls on geomechanical behavior [74]. This justifies the
integration of ML in the geomechanical workflow as a reliable surrogate for more costly laboratory or

inversion-based approaches [75].
5.3. 3D Mechanical Earth Model Insights

Objective 3 Review: The upscaled RF predictions, integrated via Sequential Gaussian Simulation, produced

continuous 3D volumes that clearly delineate high-stiffness turbidite sands and lower-stiffness shaly intervals [76].

o Implication: The spatial patterns correspond closely with known depositional architecture—Ilobate sand bodies

flanked by fine-grained seals—validating our workflow’s geological consistency [77].

e Interpretation: These 3D property maps enable the identification of “sweet spots” for drilling where
mechanical strength is sufficient to support stable wellbores and effective completions, reducing the likelihood of

sand production or casing collapse [77].
5.4. Spatial Variability, Uncertainty, and Risk Mitigation

Objective 4 Review: Uncertainty maps reveal that prediction variance is greatest near major faults and in regions

distant from calibration wells [79].
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a. Implication: Regions of elevated uncertainty (o(v) up to 0.06) should be flagged for additional data
acquisition—such as sidewall cores, image logs, or pilot boreholes—to de-risk future appraisal or development
wells [80].

b. Interpretation: Incorporating uncertainty quantification directly into the development planning process allows
operators to adopt conservative completion designs (e.g., narrower mud weight windows, controlled drilling rates)
in high-risk zones, thereby enhancing drilling safety and cost predictability [81].

5.5. Integrated Workflow Benefits and Operational Impact
By achieving all four objectives, our integrated ML-geomechanics workflow offers several operational advantages:

1. Efficiency: Rapid prediction of mechanical properties across the entire reservoir volume without the need for

extensive coring or iterative inversion tuning [82].

2. Cost Savings: Reduction in core-acquisition costs and inversion processing time, as ML models leverage
existing well and seismic data [83].

3. Enhanced Planning: Detailed mechanical earth models and uncertainty maps inform well placement, mud

weight design, and completion strategies, minimizing non-productive time [84].

4. Scalability: The framework can be extended to additional wells and updated as new data arrive, continuously

refining model accuracy [85].
5.6. Limitations and Future Work

While the current study demonstrates the promise of ML-driven geomechanical characterization, several

limitations and avenues for improvement remain:

o Data Coverage: Calibration cores were available from only two wells; increased core sampling would further

constrain empirical correlations and ML training [86].

o Seismic Resolution: Seismic-derived attributes are inherently limited by bandwidth; integrating broadband or

multi-azimuth seismic data may enhance prediction of fine-scale heterogeneity [87].

e Model Generalization: Although the workflow is tailored to the Agbami Field, applying it to adjacent

deepwater blocks will require recalibration of empirical models and potential retraining of ML algorithms [88].

e Advanced Uncertainty: Future studies should explore Bayesian neural networks or Gaussian process

regression to directly quantify model-form uncertainty in addition to spatial variability [89].
5.7. Conclusions from Discussion

The combination of calibrated log-derived properties, robust ML models, and geostatistical simulation has
delivered a comprehensive picture of the geomechanical architecture of the Agbami Field [90]. By satisfying the
four research objectives, the study provides a validated, data-driven methodology that can be adopted for
risk-informed reservoir development in deepwater settings [91]. The insights gained not only enhance drilling and

completion efficiency but also lay the groundwork for iterative model refinement as new data become available.
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2 6. Conclusion and Recommendations

This study set out to integrate conventional geomechanical analysis with machine-learning techniques to achieve
optimal reservoir characterization in the deepwater Agbami Field [92]. By systematically addressing the four
objectives defined in the Introduction, we have demonstrated a robust, data-driven workflow capable of producing
calibrated mechanical property estimates, high-accuracy ML models, spatially continuous 3D property volumes,
and quantitative uncertainty assessments [93]. Below, we summarize our key conclusions and provide targeted

recommendations for field development and future investigations.
6.1. Key Conclusions
1. Log-Derived Calibration (Objective 1):

— Empirical correlations for E, v, K, G, and UCS, when tuned against limited core data, yielded mean biases below
4% [94].

— Calibrated log-derived properties offer an accurate, cost-effective proxy for laboratory measurements in uncored
intervals [95].

2. Machine Learning Prediction (Objective 2):

—Random Forest and ANN models achieved R? > 0.88 and RMSE reductions of 10—15 % compared to uncalibrated

empirical estimates [96].

— RF’s ensemble approach provided the best balance of accuracy and robustness, particularly in noisy or

heterogeneous intervals [97].
3. 3D Geomechanical Modeling (Objective 3):

— SGS-upscaled ML predictions delineated high-stiffness turbidite sands (>10 GPa) and low-stiffness seals (<6
GPa) [98].

— Models aligned with depositional architecture, enabling "sweet spot" identification [99]..
4. Uncertainty and Spatial Variability (Objective 4):
— Voxel-wise uncertainty maps highlighted zones (o(v) >0.06) near faults and inter-well gaps [100].

— Incorporation of uncertainty directly into planning enables conservative well designs and targeted data-gathering

campaigns [101].
6.2. Field Development Recommendations
1. Drilling & Completion Design:

— Prioritize well trajectories through zones where E > 8 GPa and UCS > 30 MPa, as indicated in the 3D model, to

minimize wellbore instability risks [102].

— In high-uncertainty areas (o(v) > 0.04), adopt narrower mud weight windows and conservative ramp-up rates to

mitigate collapse or fracturing [103].
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2. Data Acquisition Strategy:

— Acquire sidewall cores or dedicated coring runs in high-uncertainty fault blocks to refine calibration and reduce
variance [104].

— Employ image logs (e.g., FMI) in appraisal wells to validate fracture orientation and improve geomechanical

modeling inputs [105].
3. Workflow Integration:

— Institutionalize the ML-geomechanics workflow in real-time drilling support, updating models as new log and
seismic data become available [106].

— Establish a central database for incoming logs, core results, and seismic inversion outputs to facilitate continuous

model retraining [107].
6.3. Future Research Directions

e Model Generalization: Apply and recalibrate the workflow to adjacent deepwater blocks (e.g., OML 128/129)
to test transferability and basin-wide applicability [108].

e Advanced Uncertainty Quantification: Explore Bayesian Neural Networks or Gaussian Process Regression

to provide probabilistic property fields with inherent model-form uncertainty [109].

e Enhanced Seismic Attributes: Integrate broadband or multi-azimuth seismic data and attribute derivatives

(e.g., curvature, anisotropy) to capture fine-scale mechanical heterogeneity [110].

e Coupled Reservoir-Geomechanical Simulation: Incorporate dynamic reservoir simulation to assess
production-induced stress changes and subsidence over time, closing the loop between geomechanics and flow
performance [111].

6.4. Future Recommendations

* Implement the ML—geomechanics workflow in real-time drilling support to enable model updates as new log and

seismic data are acquired.

* Acquire additional sidewall cores and image logs in high-uncertainty fault blocks to improve calibration and

reduce prediction variance.
* Extend the workflow to adjacent blocks and perform transferability tests to evaluate basin-scale applicability.

« Integrate coupled reservoir—-geomechanical simulations to assess production-induced stress changes and

operational risks over reservoir life.

By fulfilling the initial research objectives and offering a clear path forward, this work provides a scalable,
cost-effective framework for geomechanical characterization in deepwater settings. Adoption of these
recommendations will enhance drilling safety, optimize completion designs, and improve long-term reservoir

management in the Agbami Field and similar offshore environments.
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