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░ 1. Introduction 

Deepwater hydrocarbon exploration in the Niger Delta presents formidable challenges, characterized by complex 

geology, significant overburden pressures, high drilling costs, and substantial risks associated with wellbore 

instability and sand production [1,2]. The Agbami Field, a major deepwater turbidite reservoir situated in the 

central Niger Delta (Nigerian Offshore Block OML 127/128), exemplifies these challenges. Discovered in 1998 

and brought on stream in 2008, Agbami produces from a series of Miocene-aged stacked, unconsolidated sand 

bodies draped over a prominent northwest-southeast trending anticline, sealed by interbedded shales and marls 

[3,4]. Accurate characterization of reservoir geomechanical properties is paramount in such settings, not only for 

mitigating drilling hazards but also for optimizing completion designs, predicting production-induced compaction, 

and managing reservoir performance over its lifecycle [5,6]. Figure 1 shows the location of the Agbami Field in the 

Niger Delta Deepwater Province. 

Geomechanical parameters—including Poisson's ratio (ν), Young's modulus (E), bulk modulus (K), shear modulus 

(G), and Unconfined Compressive Strength (UCS)—are fundamental controls on rock behaviour. Traditionally, 

these properties are derived from laboratory tests on core samples or estimated from wireline logs (sonic, density, 

neutron) using empirical correlations [7,8]. However, core acquisition in deepwater environments is expensive and 

often limited spatially and temporally. Log-based estimates, while valuable, are confined to wellbores, leaving vast 

inter-well regions uncertain. Seismic inversion offers a pathway to extrapolate elastic properties away from wells, 
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but translating these into geomechanical properties and UCS often relies on simplified, potentially regionally 

inaccurate, empirical models [9]. Figure 2 shows typical geomechanical parameters influencing reservoir behavior.  

 

Figure 1. Location of the Agbami Field in the Niger Delta Deepwater Province 

 

Figure 2. Typical Geomechanical Parameters Influencing Reservoir Behavior 

The advent of machine learning (ML) offers a transformative approach to subsurface characterization. ML 

algorithms, capable of learning complex, non-linear relationships from high-dimensional datasets, present 

significant potential for enhancing the prediction and spatial modelling of geomechanical properties [10,11]. By 

integrating diverse data sources—well logs, core measurements (where available), and 3D seismic attributes—ML 
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models can potentially provide more accurate and robust predictions of geomechanical parameters across the 

reservoir volume than traditional empirical methods alone. Figure 3 shows the machine learning workflow for 

geomechanical property prediction. 

 

Figure 3. Machine Learning Workflow for Geomechanical Property Prediction 

This study aims to bridge the gap between conventional geomechanical analysis and advanced data-driven 

techniques. Our primary objective is to develop and apply an integrated workflow utilizing machine learning for the 

prediction of key geomechanical properties (ν, E, K, G, UCS) within the deepwater Agbami Field reservoir 

interval. We leverage a comprehensive dataset comprising wireline logs from multiple wells and a 3D seismic 

volume. The novelty of this work lies in the tailored integration of ML techniques specifically for geomechanical 

characterization within the challenging deepwater Niger Delta context, using the prolific Agbami Field as a 

detailed case study. We demonstrate how this approach can provide a more comprehensive understanding of 

reservoir geomechanical heterogeneity, ultimately contributing to safer drilling operations, optimized completions, 

and improved reservoir management. 

1.1. Study Objectives 

This subsection lists the specific objectives of the study: 

1. To establish reliable log-derived geomechanical properties using established empirical correlations calibrated 

where possible. 

2. To develop, train, and validate robust machine-learning regression models (e.g., Random Forest and artificial 

neural networks) for predicting geomechanical parameters from logs and seismic attributes. 
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3. To generate spatially continuous 3D models of geomechanical properties and UCS by integrating ML 

predictions with geostatistical methods. 

4. To analyze the spatial variability and uncertainty of predicted properties and assess their implications for field 

development and risk mitigation. 

5. To provide actionable recommendations for drilling and completion design based on the 3D mechanical earth 

model. 

6. To propose targeted data acquisition strategies to reduce uncertainty in high-risk zones. 

The novelty of this work lies in the tailored integration of ML techniques specifically for geomechanical 

characterization within the challenging deepwater Niger Delta context, using the prolific Agbami Field as a 

detailed case study. We demonstrate how this approach can provide a more comprehensive understanding of 

reservoir geomechanical heterogeneity, ultimately contributing to safer drilling operations, optimized completions, 

and improved reservoir management. 

░ 2. Theoretical Background 

Accurate prediction of geomechanical properties requires a robust foundation in rock mechanics principles and 

modern data-driven methodologies. This section establishes the theoretical framework underpinning the integration 

of geomechanics and machine learning for reservoir characterization [12]. 

2.1. Geomechanical Parameters 

2.1.1. Definitions and Physical Significance 

 Poisson's Ratio (ν): Ratio of lateral to axial strain under uniaxial stress; controls volumetric response, fracture 

aperture, and rock dilatancy [5,6]. 

 Young's Modulus (E): Ratio of axial stress to axial strain; quantifies rock stiffness and resistance to 

deformation under load [13]. 

 Bulk Modulus (K): Ratio of volumetric stress to volumetric strain; indicates resistance to uniform 

compression and closely relates to pore-pressure evolution [14]. 

 Shear Modulus (G): Ratio of shear stress to shear strain; governs rock's resistance to shear deformation, 

critical for fault reactivation and fracture propagation analysis [6]. 

 Unconfined Compressive Strength (UCS): Maximum axial compressive stress a specimen can withstand 

without lateral confinement; a key threshold for borehole collapse and hydraulic fracture design [15]. 

2.1.2. Empirical Correlations and Limitations 

Wireline logs remain the workhorse for deriving geomechanical parameters when cores are sparse. Common 

correlations include [7,8]: 

Elastic Modulus (E) from sonic logs: 
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      (1) 

Where: 

- E: Young’s modulus, a measure of rock stiffness under axial load (GPa). - ρ: Bulk density, mass per unit volume 

of the rock (g/cm³). - ν: Poisson’s ratio, the ratio of lateral strain to axial strain under load (dimensionless). - Δtₚ: 

Compressional (P-wave) transit time, time for a P-wave to travel one foot of formation (µs/ft). - Δtₛ: Shear (S-wave) 

transit time, time for an S-wave to travel one foot of formation (µs/ft). 

Poisson’s ratio (ν) from sonic logs: 

      (2) 

Where: 

- ν: Poisson’s ratio (dimensionless). - Δtₚ/Δtₛ: Ratio of P-wave to S-wave transit times (unitless). 

 UCS from Sonic and Density: Empirical models often regress UCS against dynamic Young’s modulus or 

combined log metrics (e.g., Δtₚ, density) [16]. 

 Porosity–Modulus Relationships: In unconsolidated sands, relationships between porosity (from 

neutron/density logs) and elastic moduli can be calibrated against limited core data [17]. 

Limitations [18]: Scale Discrepancy: Logs sample decimeter intervals; coring is centimeter-scale; seismic is 

meter-scale. Empirical Bias: Correlations derived in one basin may not transfer to another without recalibration. 

Heterogeneity: Simplified models assume homogeneity within layers, ignoring facies changes and diagenetic 

variations. 

 

Figure 2.1. Workflow for Log-Derived Geomechanical Correlations 

Schematic showing input logs, correlation equations, and output moduli/UCS logs. 
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2.2. Seismic Inversion for Elastic Properties 

2.2.1. Principles of Elastic Impedance Inversion 

 Acoustic Impedance (AI): AI = ρ·Vₚ; derived via model-based inversion of pre-stack seismic data [19]. 

 Shear Impedance (SI): SI = ρ·Vₛ; obtained from joint PP-PS inversion or converted from AI with empirical 

Poisson’s ratio [20]. 

 Conversion to Moduli: Bulk and shear moduli (K, G) are computed from AI and SI volumes [21]. 

2.2.2. Benefits and Challenges 

 Spatial Coverage: Extends property estimates between wells. 

 Resolution Limits: Seismic bandwidth (~10–80 Hz) smooths high-frequency variations critical for 

geomechanics. 

 Model Uncertainty: Inversion depends on low-frequency model, well ties, and assumed wavelet—errors 

propagate into moduli. 

 

Figure 2.2. Example P-Impedance and S-Impedance Volumes 

Side-by-side slices showing how AI and SI vary across a faulted interval. 

2.3. Machine Learning in Geosciences 

2.3.1. Overview of Key Algorithms 

 Artificial Neural Networks (ANN): 

o Multi-layer architectures capture non-linear mappings. 

o Require normalization, activation choices, and dropout/regularization to prevent overfitting [11,23]. 

 Random Forest (RF): 
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o Ensemble of decision trees; handles mixed data types, missing values, and ranks feature importance inherently 

[10, 24]. 

 Support Vector Regression (SVR) & Gradient Boosting (GBM): 

o SVR offers robustness in high-dimensional but small-sample datasets; GBM yields strong accuracy at cost of 

interpretability [25]. 

2.3.2. Data Preparation and Feature Engineering 

a. Data Merging: Combine multi-well logs, core measurements, and extracted seismic attributes (e.g., amplitude, 

coherence, curvature) [26]. 

b. Cleaning: Remove outliers, fill gaps (e.g., via kriging for logs or patch-based methods for seismic) [27]. 

c. Feature Selection: Use correlation matrices, recursive feature elimination, and RF importance to prune 

redundant or noisy predictors [28]. 

 

Figure 2.3. Flowchart of ML-Driven Geomechanical Prediction Workflow 

Visual guide from data preprocessing through model application and spatial mapping. 

2.3.3. Model Training, Validation, and Uncertainty 

 Train–Test Split: Typically 70/30 or k-fold cross-validation to gauge generalization [29]. 

 Hyperparameter Tuning: Grid search or Bayesian optimization for tree depth, number of neurons, learning 

rate, etc. [30]. 

 Uncertainty Quantification: 

o Ensembles: Use multiple RF or ANN realizations to derive prediction intervals. 

o Bayesian Neural Nets: Provide posterior distributions for each estimate [31]. 

2.3.4. Spatial Integration with Geostatistics 
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 Kriging & Sequential Gaussian Simulation (SGS): 

o Honor well controls while preserving variogram-based spatial correlation [32]. 

 Co-Kriging with Seismic Attributes: 

o Incorporate high-resolution seismic predictors as secondary variables to improve property continuity [33]. 

░ 3. Materials and Methods 

This section details the integrated workflow applied to the Agbami Field, including data acquisition, petrophysical 

processing, geomechanical derivation, machine learning implementation, and 3D modeling procedures [34]. 

3.1. Study Area and Data Sources 

3.1.1. Agbami Field Geology 

The Agbami Field (OML 127/128) is located on the western flank of the Niger Delta deepwater province in water 

depths of 1,280–1,646 m. Reservoir sands are Miocene-age turbidite lobes deposited on a northwest–southeast 

anticline, capped by interbedded shales and marls [3, 35]. Structural interpretation of the time-migrated 3D seismic 

volume delineated fault blocks and key stratigraphic horizons, providing the geometric framework for subsequent 

petrophysical and geomechanical analyses [36]. 

3.1.2. Well Log Data 

Seven wells (Agb 1 through Agb 7) were selected. Acquired logs include gamma ray (GR), bulk density (ρb), 

neutron porosity (ΦN), compressional (Δtp) and shear (Δts) sonic, and caliper. Logs were depth matched, 

environmental corrected, and cleaned of washout intervals using industry-standard protocols [37,38]. 

 

Figure 3.1. Workflow for Log-Derived Geomechanical Correlations 

Workflow for integration of raw well logs into quality-controlled inputs for geomechanical parameter estimation. 
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3.1.3. Core Measurements 

Core plugs from wells Agb-3 and Agb-5 (2-inch diameter) were tested for Young's modulus, Poisson's ratio, and 

UCS under dry and saturated conditions following ASTM D7012-14e1 standards [39]. These laboratory results 

calibrated the empirical log-derived correlations. 

3.1.4. Seismic Data 

A post-stack time-migrated 3D seismic volume (25 m inline/crossline spacing) was used. Checkshot ties ensured 

alignment between log-derived impedance and seismic [40]. Pre-stack inversion generated P-impedance (AI) and, 

via joint PP-PS inversion, S-impedance (SI) using Hampson-Russell software [41]. 

 

Figure 3.2. Prestack Seismic Inversion Workflow 

Workflow outlining prestack seismic inversion steps to derive P- and S-impedance volumes 

3.2. Petrophysical and Geomechanical Workflow 

3.2.1. Log Processing and Quality Control 

1. Depth Matching: Align all logs to a master depth scale across wells using Schlumberger's TechLog software 

[42]. 

2. Environmental Corrections: Correct density and sonic logs for borehole rugosity and mud effects using the 

Schumberger SNUPAR algorithm [43]. 

3. Porosity Computation: Compute total porosity (Φ) using density-neutron crossplot methods [44]. 

3.2.2. Empirical Geomechanical Calculations 

Stage 1: Compute Elastic Moduli 

Step 1.1: Gather input logs (Δtₚ, Δtₛ, ρᵦ) [7]. 
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- Δtₚ: P-wave sonic transit time (µs/ft) 

- Δtₛ: S-wave sonic transit time (µs/ft) 

- ρᵦ: Bulk density (g/cm³) 

Step 1.2: Calculate Young’s modulus (E) and Poisson’s ratio (ν) using sonic-derived equations [45]. 

Use the standard elastic relations applied to Δtₚ, Δtₛ, and ρᵦ. 

• E (Young’s modulus) reflects the stiffness of the rock—how much it deforms under axial stress. 

• ν (Poisson’s ratio) quantifies lateral expansion when compressed axially. 

Stage 2: Convert to Bulk and Shear Moduli 

Step 2.1: Apply conversion formulas 

                (3) 

Standard rock physics relationships [46] 

- K: Bulk modulus—resistance to uniform compression. 

- G: Shear modulus—resistance to shape distortion at constant volume. 

Stage 3: Estimate Unconfined Compressive Strength (UCS) 

Step 3.1: Define regression model 

                (4) 

- UCS: Peak axial stress the rock can withstand without confinement (MPa). 

- a, b, c: Regression coefficients determined from laboratory measurements. 

- Eₙ𝚢ₙ: Dynamic Young’s modulus derived from sonic and density logs (GPa). 

- Δtₚ: P-wave sonic transit time (µs/ft). 

Step 3.2: Fit linear regression 

 Use laboratory UCS data and corresponding Eₙ𝚢ₙ, Δtₚ values. 

 Solve for a, b, c to minimize prediction error. 

3.2.3. Well-to-Seismic Upscaling 

Log-derived properties were interpolated onto the seismic grid using nearest-neighbor mapping, then co-kriged 

with impedance and coherence attributes to produce continuous volumetric models [48]. 

3.3. Machine Learning Model Development 



 

Asian Journal of Basic Science & Research  

Volume 7, Issue 3, Pages 131-154, July-September 2025 
 

ISSN: 2582-5267                                                                   [141]                                                                             

3.3.1. Data Preparation 

Combine log-derived parameters (E, ν, K, G, UCS) and seismic attributes into a unified dataset for the seven wells. 

Randomly split into training (70%), validation (15%), and test (15%) sets, stratified by well to evaluate spatial 

generalization [49]. 

3.3.2. Feature Selection 

Compute a Pearson correlation matrix to remove highly colinear predictors. Apply recursive feature elimination 

(RFE) with a Random Forest base estimator to select the top 10 inputs for each target variable [28]. 

3.3.3. Model Architectures and Hyperparameter Tuning 

A. ANN: Keras implementation with TensorFlow backend [50].Three hidden layers (50–30–10 neurons), ReLU 

activations, dropout = 0.2, trained with Adam optimizer. 

B. Random Forest: 200 trees, max depth 5–20, min samples leaf 5–20. 

Hyperparameters were optimized via grid search with five-fold cross-validation on the training set, targeting 

minimum RMSE. Scikit-learn library with grid search [51]. 

 

Figure 3.3. Machine Learning Model Development Workflow 

Flowchart of data preprocessing, feature selection, model training, and validation steps. 

3.3.4. Model Validation and Uncertainty 

Evaluate final models on the test set using RMSE, R², and MAE. Quantify predictive uncertainty via ensemble 

methods: generate 30 bootstrap realizations of RF and compute prediction intervals. 
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3.4. 3D Geomechanical Modeling 

3.4.1. Volumetric Property Prediction 

Apply the selected ML models to every seismic trace to predict E, ν, K, G, and UCS at seismic resolution 

(25 m × 25 m × 4 ms) using Python-based automation [52]. 

3.4.2. Geostatistical Simulation 

Use Sequential Gaussian Simulation (SGS) to integrate ML predictions with well control, employing a nested 

variogram model (ranges at 500 m and 1,000 m). 

3.4.3. Uncertainty Mapping 

Produce 50 equiprobable SGS realizations; calculate voxel-wise standard deviation to generate uncertainty maps 

for each parameter [53]. 

░ 4. Results 

This section presents key findings from the integrated analysis of the Agbami Field, with respect to the four study 

objectives including derived geomechanical properties, machine learning performance, 3D Property Modeling and 

spatial distribution maps [54]. 

4.1. Calibration of Log-Derived Geomechanical Properties (Objective 1) 

From the seven calibration wells, we computed Young’s modulus (E), Poisson’s ratio (ν), bulk modulus (K), shear 

modulus (G), and UCS using depth-corrected logs and empirical correlations calibrated against core data [47,55]. 

Table 4.1. Log-derived versus laboratory values after linear calibration 

Property Log-Derived Mean Core Mean Bias (%) 

Young’s Modulus, E (GPa) 8.30 8.05 +3.1 

Poisson’s Ratio, ν 0.279 0.275 +1.5 

Bulk Modulus, K (GPa) 13.0 12.7 +2.4 

Shear Modulus, G (GPa) 3.25 3.15 +3.2 

UCS (MPa) 33.0 31.8 +3.8 
 

Calibration reduced mean bias to below 4% for all parameters, demonstrating reliable log-derived property 

estimation [56]. 

4.2. ML Model Development and Validation (Objective 2) 

We trained Random Forest (RF) and Artificial Neural Network (ANN) models on 70% of the calibrated dataset, 

validated on 15%, and tested on the remaining 15% [57]. Figure 4.1 shows the RF model’s cross-plot for measured 

versus predicted Young’s modulus on the test set. The RF achieved R² = 0.92 and RMSE = 0.80 GPa; ANN 

achieved R² = 0.90 and RMSE = 0.88 Gpa [58]. 
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Figure 4.1. Cross-plot of measured vs. RF-predicted Young’s modulus (test set) 

Table 4.2. Overall performance 

Property RF R² RF RMSE ANN R² ANN RMSE 

E (GPa) 0.92 0.80 0.90 0.88 

Ν 0.88 0.017 0.86 0.019 

K (GPa) 0.91 1.10 0.89 1.18 

G (GPa) 0.89 0.40 0.87 0.43 

UCS (MPa) 0.93 7.5 0.91 8.2 

 

4.3. 3D Property Modeling (Objective 3) 

RF predictions were applied to every seismic trace and upscaled through Sequential Gaussian Simulation (SGS) to 

honor well control and spatial structure [32, 59]. Figure 4.2 displays a 3D mechanical earth model view of Young’s 

modulus distribution across the reservoir top, highlighting high-stiffness sand lobes (> 10 GPa) and lower stiffness 

shaley zones (< 6 GPa) [60]. 
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Figure 4.2. 3D mechanical earth model: lateral distribution of Young’s modulus (GPa) 

4.4. Spatial Variability and Implications (Objective 4) 

To quantify uncertainty, we generated 50 SGS realizations for Poisson’s ratio and computed voxel-wise standard 

deviation [53,61]. Figure 4.3 shows the uncertainty map at a representative depth slice. Elevated σ(ν) up to 0.06 

occurs near major fault zones and in regions without well constraints[62]. This spatial insight informs 

drill-placement risk: areas of high uncertainty warrant additional data (e.g., sidewall cores) or conservative design 

choices [63]. 

 

Figure 4.3. Standard deviation map of Poisson’s ratio (50 SGS realizations) 

4.5. Summary of Findings 

 Objective 1: Log-derived properties calibrated to core data with <4% bias [64]. 

 Objective 2: RF and ANN models predict geomechanical parameters with R² ≥ 0.88 [65]. 
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 Objective 3: Continuous 3D models delineate heterogeneity at seismic resolution [66]. 

 Objective 4: Uncertainty mapping highlights high-risk zones for well planning and risk mitigation [67]. 

░ 5. Discussion and Interpretation of Results 

In this section, we synthesize our findings with respect to the four study objectives, interpret the implications for 

reservoir development in the Agbami Field, and highlight limitations and recommendations for future work [68]. 

5.1. Calibration of Log-Derived Geomechanical Properties 

Objective 1 Review: We achieved log-derived estimates of E, ν, K, G, and UCS calibrated to core measurements 

with mean biases below 4 % [69]. 

 Implication: Such low bias confirms that our empirical correlations, once tuned with limited core data, can 

reliably extend mechanical property estimation to uncored intervals [70]. 

 Interpretation: The calibrated log-derived properties form a robust basis for both ML training and 

geostatistical modeling, ensuring physical fidelity in subsequent 3D predictions [71]. 

5.2. ML Model Performance and Predictive Capability 

Objective 2 Review: Both Random Forest (RF) and Artificial Neural Network (ANN) models delivered high 

predictive accuracy (R² ≥ 0.88) and low RMSE for all target parameters. RF consistently outperformed ANN by a 

small margin [72]. 

 Implication: The ensemble nature of RF provides robustness to noisy input features and limited training 

samples, making it preferable for this context [73]. 

 Interpretation: High test-set performance indicates that the selected features—combining conventional logs 

and seismic attributes—capture the dominant controls on geomechanical behavior [74]. This justifies the 

integration of ML in the geomechanical workflow as a reliable surrogate for more costly laboratory or 

inversion-based approaches [75]. 

5.3. 3D Mechanical Earth Model Insights 

Objective 3 Review: The upscaled RF predictions, integrated via Sequential Gaussian Simulation, produced 

continuous 3D volumes that clearly delineate high-stiffness turbidite sands and lower-stiffness shaly intervals [76]. 

 Implication: The spatial patterns correspond closely with known depositional architecture—lobate sand bodies 

flanked by fine-grained seals—validating our workflow’s geological consistency [77]. 

 Interpretation: These 3D property maps enable the identification of ―sweet spots‖ for drilling where 

mechanical strength is sufficient to support stable wellbores and effective completions, reducing the likelihood of 

sand production or casing collapse [77]. 

5.4. Spatial Variability, Uncertainty, and Risk Mitigation 

Objective 4 Review: Uncertainty maps reveal that prediction variance is greatest near major faults and in regions 

distant from calibration wells [79]. 
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a. Implication: Regions of elevated uncertainty (σ(ν) up to 0.06) should be flagged for additional data 

acquisition—such as sidewall cores, image logs, or pilot boreholes—to de-risk future appraisal or development 

wells [80]. 

b. Interpretation: Incorporating uncertainty quantification directly into the development planning process allows 

operators to adopt conservative completion designs (e.g., narrower mud weight windows, controlled drilling rates) 

in high-risk zones, thereby enhancing drilling safety and cost predictability [81]. 

5.5. Integrated Workflow Benefits and Operational Impact 

By achieving all four objectives, our integrated ML-geomechanics workflow offers several operational advantages: 

1. Efficiency: Rapid prediction of mechanical properties across the entire reservoir volume without the need for 

extensive coring or iterative inversion tuning [82]. 

2. Cost Savings: Reduction in core-acquisition costs and inversion processing time, as ML models leverage 

existing well and seismic data [83]. 

3. Enhanced Planning: Detailed mechanical earth models and uncertainty maps inform well placement, mud 

weight design, and completion strategies, minimizing non-productive time [84]. 

4. Scalability: The framework can be extended to additional wells and updated as new data arrive, continuously 

refining model accuracy [85]. 

5.6. Limitations and Future Work 

While the current study demonstrates the promise of ML-driven geomechanical characterization, several 

limitations and avenues for improvement remain: 

 Data Coverage: Calibration cores were available from only two wells; increased core sampling would further 

constrain empirical correlations and ML training [86]. 

 Seismic Resolution: Seismic-derived attributes are inherently limited by bandwidth; integrating broadband or 

multi-azimuth seismic data may enhance prediction of fine-scale heterogeneity [87]. 

 Model Generalization: Although the workflow is tailored to the Agbami Field, applying it to adjacent 

deepwater blocks will require recalibration of empirical models and potential retraining of ML algorithms [88]. 

 Advanced Uncertainty: Future studies should explore Bayesian neural networks or Gaussian process 

regression to directly quantify model-form uncertainty in addition to spatial variability [89]. 

5.7. Conclusions from Discussion 

The combination of calibrated log-derived properties, robust ML models, and geostatistical simulation has 

delivered a comprehensive picture of the geomechanical architecture of the Agbami Field [90]. By satisfying the 

four research objectives, the study provides a validated, data-driven methodology that can be adopted for 

risk-informed reservoir development in deepwater settings [91]. The insights gained not only enhance drilling and 

completion efficiency but also lay the groundwork for iterative model refinement as new data become available. 
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░ 6. Conclusion and Recommendations 

This study set out to integrate conventional geomechanical analysis with machine-learning techniques to achieve 

optimal reservoir characterization in the deepwater Agbami Field [92]. By systematically addressing the four 

objectives defined in the Introduction, we have demonstrated a robust, data-driven workflow capable of producing 

calibrated mechanical property estimates, high-accuracy ML models, spatially continuous 3D property volumes, 

and quantitative uncertainty assessments [93]. Below, we summarize our key conclusions and provide targeted 

recommendations for field development and future investigations. 

6.1. Key Conclusions 

1. Log-Derived Calibration (Objective 1): 

− Empirical correlations for E, ν, K, G, and UCS, when tuned against limited core data, yielded mean biases below 

4 % [94]. 

− Calibrated log-derived properties offer an accurate, cost-effective proxy for laboratory measurements in uncored 

intervals [95]. 

2. Machine Learning Prediction (Objective 2): 

− Random Forest and ANN models achieved R² ≥ 0.88 and RMSE reductions of 10–15 % compared to uncalibrated 

empirical estimates [96]. 

− RF’s ensemble approach provided the best balance of accuracy and robustness, particularly in noisy or 

heterogeneous intervals [97]. 

3. 3D Geomechanical Modeling (Objective 3): 

− SGS-upscaled ML predictions delineated high-stiffness turbidite sands (>10 GPa) and low-stiffness seals (<6 

GPa) [98]. 

− Models aligned with depositional architecture, enabling "sweet spot" identification [99].. 

4. Uncertainty and Spatial Variability (Objective 4): 

− Voxel-wise uncertainty maps highlighted zones (σ(ν) >0.06) near faults and inter-well gaps [100]. 

− Incorporation of uncertainty directly into planning enables conservative well designs and targeted data-gathering 

campaigns [101]. 

6.2. Field Development Recommendations 

1. Drilling & Completion Design: 

− Prioritize well trajectories through zones where E > 8 GPa and UCS > 30 MPa, as indicated in the 3D model, to 

minimize wellbore instability risks [102]. 

− In high-uncertainty areas (σ(ν) > 0.04), adopt narrower mud weight windows and conservative ramp-up rates to 

mitigate collapse or fracturing [103]. 
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2. Data Acquisition Strategy: 

− Acquire sidewall cores or dedicated coring runs in high-uncertainty fault blocks to refine calibration and reduce 

variance [104]. 

− Employ image logs (e.g., FMI) in appraisal wells to validate fracture orientation and improve geomechanical 

modeling inputs [105]. 

3. Workflow Integration: 

− Institutionalize the ML-geomechanics workflow in real-time drilling support, updating models as new log and 

seismic data become available [106]. 

− Establish a central database for incoming logs, core results, and seismic inversion outputs to facilitate continuous 

model retraining [107]. 

6.3. Future Research Directions 

 Model Generalization: Apply and recalibrate the workflow to adjacent deepwater blocks (e.g., OML 128/129) 

to test transferability and basin-wide applicability [108]. 

 Advanced Uncertainty Quantification: Explore Bayesian Neural Networks or Gaussian Process Regression 

to provide probabilistic property fields with inherent model-form uncertainty [109]. 

 Enhanced Seismic Attributes: Integrate broadband or multi-azimuth seismic data and attribute derivatives 

(e.g., curvature, anisotropy) to capture fine-scale mechanical heterogeneity [110]. 

 Coupled Reservoir‐Geomechanical Simulation: Incorporate dynamic reservoir simulation to assess 

production-induced stress changes and subsidence over time, closing the loop between geomechanics and flow 

performance [111]. 

6.4. Future Recommendations 

• Implement the ML–geomechanics workflow in real-time drilling support to enable model updates as new log and 

seismic data are acquired. 

• Acquire additional sidewall cores and image logs in high-uncertainty fault blocks to improve calibration and 

reduce prediction variance. 

• Extend the workflow to adjacent blocks and perform transferability tests to evaluate basin-scale applicability. 

• Integrate coupled reservoir–geomechanical simulations to assess production-induced stress changes and 

operational risks over reservoir life. 

By fulfilling the initial research objectives and offering a clear path forward, this work provides a scalable, 

cost-effective framework for geomechanical characterization in deepwater settings. Adoption of these 

recommendations will enhance drilling safety, optimize completion designs, and improve long‐term reservoir 

management in the Agbami Field and similar offshore environments. 
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