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░ 1. Introduction 

The launch of ChatGPT by OpenAI on November 30, 2022, became a turning point in the public and professional 

engagement with artificial intelligence (Haleem et al., 2022). In contrast to previous AI systems that were 

task-specific, ChatGPT was able to engage in extended conversations and change in relation to different prompts, 

and to produce text which frequently felt historically contextually relevant and coherent (Menon & Shilpa, 2023). 

Its working architecture is that of the transformer (Khan et al., 2023), and it has been trained using a wider 

collection of text sources, subsequently optimized with supervised fine-tuning and reinforcement learning via 

human feedback (RLHF) (Gonzalez Barman et al., 2025). Through these training steps, it can respond in a 

grammatically fluent manner and with an apparent sense of a conversation context (Javaid et al., 2023).  

New versions of ChatGPT and related systems have gone beyond text to include images, audio, and even multiple 

different media (Roumeliotis & Tselikas, 2023). They have also gained the ability to use external tools, retrieve 

up-to-date information, and sustain longer, more context-aware exchanges (Ray, 2023). This has led to large 

language models transforming themselves out of an experimental research project and into a platform integrated 

into the classroom and businesses, research labs, medical facilities, and creative fields (Lopez-Gazpio, 2025). 

Models like ChatGPT represent a unifying foundation for knowledge access, problem-solving, and human–

computer interaction. They summarize the trends of even bigger and more diverse datasets into a single flexible 
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model that can generalize across tasks by not requiring much retraining, but by an action called prompting (Nerella 

et al., 2024). They can synchronize with external devices and query systems and act as an adaptive means of 

communicating between users and complicated computing tasks (Lakatos et al., 2025). This versatility enables 

them to address problems that were once resistant to automation, ill-defined queries, creative synthesis, and 

long-tail tasks, while also allowing rapid policy or safety updates through prompts and lightweight fine-tuning. For 

researchers, they provide a living testbed for ongoing challenges in robustness, interpretability, alignment, and 

human–AI collaboration (Jeyaraman et al., 2023). 

However, alongside these advances are notable gaps that shape both the technology’s reliability and its broader 

adoption. ChatGPT can produce confident but factually incorrect statements, a limitation often described as 

“hallucination (Ray, 2023).” Its decision-making process remains opaque, making it difficult to explain why certain 

outputs are produced (Cheong, 2024). Access to the data and methods used in its training is limited, which hinders 

independent assessment of potential biases or blind spots (Busch et al., 2025). As its capabilities grow, questions 

remain about its cultural adaptability, long-term accuracy in complex tasks, and the environmental and economic 

costs of maintaining such large-scale models (Ray, 2023). 

The evolution of the GPT family of models, from GPT-1 in 2018 to GPT-5 in 2025, reflects steady increases in 

scale, capability, and multimodal integration (Dilmegani & Sezer, 2025). Each successive version has introduced 

architectural refinements, expanded training data, and improved task performance, progressing from basic 

language modeling to advanced reasoning and tool-assisted interaction. This progression is illustrated in Figure 1, 

which highlights the release year, core features, and distinguishing characteristics of each model. In addition to the 

timeline shown in Figure 1, the main characteristics of each GPT generation are summarized in Table 1, providing 

a concise comparison of their release dates, scale, and key innovations. 

1.1. Aim and scope of this review 

This review takes ChatGPT as a central example for examining the architecture, training processes, practical uses, 

shortcomings, and ongoing developments of modern large language models. The discussion combines technical 

and applied perspectives, linking model design choices with the handling of data, approaches to evaluation, and the 

governance structures that shape how such systems are deployed. By drawing these strands together, the review 

highlights the persistent gaps that limit reliability, safety, and societal benefit, and outlines directions for research 

and innovation that could help address them. 

1.2. Gaps motivating the review 

Despite notable progress, ChatGPT and similar models still face significant limitations. They can produce 

confident but inaccurate responses, a tendency known as hallucination, and current evaluation benchmarks are 

inconsistent, often failing to capture real-world performance. Limited transparency around training data hinders 

bias auditing and error tracing, especially for low-resource languages. Bias mitigation measures may weaken under 

adversarial prompts or in unfamiliar cultural contexts, and reasoning abilities can falter in complex, multi-step 

tasks. These issues are compounded by large-scale deployment's high environmental and financial costs and by 

underdeveloped governance frameworks. 
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With ChatGPT positioned in a wider context of LLMs, this article sheds light on these issues and outlines possible 

solutions for increased accuracy, transparency, fairness, and sustainability. 

 

Figure 1. Timeline of GPT model evolution from GPT-1 (2018) to GPT-5 (2025), highlighting release dates, core 

features, and differentiating capabilities of each version. 

Table 1. Summary of GPT model evolution from GPT-1 (2018) to GPT-5 (2025), highlighting release dates, 

approximate parameter counts, and distinguishing features. 

Model 
Release 

Date 

Approx. 

Parameters 
Key Features/Innovations Notable Advancements 

GPT-1 
June 

2018 
117 M 

First transformer-based 

generative pre-trained model; 

trained on BookCorpus; 

introduced unsupervised 

pretraining + supervised 

fine-tuning paradigm. 

Demonstrated transfer learning 

potential for NLP. 

GPT-2 
Feb 

2019 
1.5 B 

Trained on WebText (≈40 GB); 

produced coherent 

multi-paragraph text; initial full 

release delayed over misuse 

concerns. 

Significant improvement in text 

fluency and coherence. 

GPT-3 
June 

2020 
175 B 

Trained on hundreds of billions 

of tokens from diverse internet 

sources; strong few-shot and 

zero-shot capabilities. 

Enabled OpenAI API; marked a step 

change in general-purpose language 

generation. 
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GPT-3.5 
Nov 

2022 

~175 B 

(refined) 

Instruction-tuned and 

RLHF-enhanced variant; more 

conversational; foundation for 

ChatGPT public launch. 

Greatly improved usability and 

dialogue performance. 

GPT-4/ 

GPT-4o 

Mar 

2023 

Not disclosed 

(est. >500 B 

for GPT-4) 

Multimodal input (text + 

images); better reasoning, 

factuality, and steerability; “4o” 

optimized for speed and 

efficiency. 

Achieved high scores on 

professional/academic benchmarks. 

GPT-5 
Aug 

2025 
Not disclosed 

Unified, adaptive system with 

multiple reasoning modes; 

expanded multimodality (text, 

images, audio, code); larger 

context windows; improved tool 

integration. 

Enhanced real-time reasoning, 

planning, and safety controls. 

Note: Data for GPT-1 to GPT-4 adapted from Sufi (2024); data for GPT-1 to GPT-5 adapted from Dilmegani & 

Sezer (2025). 

1.3. Study Objectives 

This review aims to: 

1) Outline the transformer-based architecture and training stages of ChatGPT and related LLMs. 

2) Summarize key applications in education, healthcare, business, and research. 

3) Highlight major limitations such as hallucinations, bias, opacity, and high energy demand. 

4) Present emerging improvements: multimodality, retrieval-augmented generation, domain-specific tuning, and 

interpretability. 

5) Discuss ethical and governance issues surrounding large-scale generative AI. 

6) Offer recommendations for future development of reliable and sustainable LLMs. 

░ 2. Background and Theoretical Foundations 

2.1. Machine Learning and Deep Learning Foundations 

Large language models such as ChatGPT are rooted in the principles of machine learning, where systems learn 

from data to improve performance rather than following a fixed set of programmed rules (Roumeliotis & Tselikas, 

2023). In this field, deep learning, with its multi-layered neural networks that can automatically learn hierarchical 

representations, has come to take center stage in the process of natural language processing (Mienye & Swart, 

2024). Conventional NLP systems were deeply rule-based or low-level statistical processing and had problems 

with how diverse and unpredictable human language can be (Bakagianni et al., 2025). The implementation of deep 

learning made it possible to substantially increase the level of linguistic pattern learning, which significantly 

contributed to breakthroughs in the field of translation, summarization, and conversational AI. 
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The ChatGPT architecture, which is based on the transformer architecture proposed by Vaswani et al. in 2017, is 

the basis of many modern LLMs (Zhang et al., 2023). Transformers operate on every token in a sequence at the 

same time as opposed to gradually, unlike the previous sequence models (recurrent neural networks (RNNs) and 

long short-term memory (LSTM) networks) (Zhang et al., 2023). That is achievable through the attention 

mechanism that computes the strength of the ties between a given token and all others within the input (Ruan & Jin, 

2022). Consequently, the model can capture both short-range dependencies (e.g., within a phrase) and long-range 

dependencies (e.g., across several sentences) with high efficiency. ChatGPT is an architecture based on 

transformers, where parallelization and multi-head self-attention give room to process a group of tokens 

simultaneously, regardless of their position (Banik et al., 2024). Figure 2 shows that the transformer can be stacked 

with attention and feed-forward modules residually connected syntactically to each other and layer-normalised, 

which allows effective contextual representation of long sequences in the module (Choi & Lee, 2023). Whereas the 

transformer has both the encoder and decoder stacks, ChatGPT only adopts the decoder with masked multi-head 

attention to support autoregressive text movement (Jin et al., 2025). 

In practice, attention enables ChatGPT to deduce what is most important in a conversational context to supply an 

answer to. For example, in a multi-turn conversation, the model can consider only a certain previous utterance that 

will explain the semantics of a current query while disregarding all other facts. Such ability, along with training 

using massive context and the billions of parameters, makes the model capable of creating coherent, contextually 

relevant, and human-like text. The research in scaling revealed that as the size of the model increases, together with 

training data, LLMs tend to perform better across a large variety of tasks, which has been used to develop the 

successive GPT generations (Filippo et al., 2024). 

This architecture laid the foundation for applying modern NLP techniques, enabling models like ChatGPT to 

process language in a way that reflects meaning and context, a process explained further in the next section. 

 

Figure 2. Illustrative Schematic of Transformer and Attention Mechanism 

(A) Stacked encoder and decoder blocks depicting multi-head attention, feed-forward layers, and residual 

connections with layer normalization. (B) The attention mechanism weighs the sum of the values of an ordered list 
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under the influence of the similarity between the queries and keys. ChatGPT is based on the decoder portion of this 

architecture, using masked multi-head attention for autoregressive text generation [Source: Choi & Lee (2023)]. 

2.2. Natural Language Processing (NLP) Concepts 

ChatGPT operates within the wider domain of natural language processing (NLP), which involves the ability of 

machines to display and create human language in a manner that displays context and meaning (Ray, 2023). NLP 

combines linguistic theory with statistical modelling in an attempt to fill that gap between raw text and the 

computational form. 

The key action in this sequence is tokenization, which splits the input text into portions or tokens, which can be 

words, subwords, or even individual characters (Qin et al., 2025). Models such as ChatGPT use a tokenization that 

is subword-based, which means that the system can be optimized to represent frequent words as well as unusual or 

new vocabulary. The tokens are then converted to numerical vectors that can be made via learnings known as 

embeddings that represent semantic and syntactic relationships (Mswahili & Jeong, 2024). Tokens that share 

semantics will be close together in the model in the high-dimensional vector space. 

After embedding, tokens undergo processing in the model attention layers, which generate a contextualized version 

of each token based on the connection between the token and all other tokens in the sequence (Mars, 2022). This 

allows the model to understand, for example, that the word “bank” might mean a financial institution in one 

sentence and a riverbank in another, depending on surrounding words (Smirnova, 2016). The last step involves the 

process of sequence modeling, where the model is offered a probability distribution of potential new tokens and 

then picks one and repeats the operation at each token position till the output is finished. 

An important feature of this process is the context window, the fixed number of tokens the model can consider at 

once (Li et al., 2024). For ChatGPT, this window size determines how much of the conversation history or 

document context can be factored into the current response. While larger windows allow for richer context 

handling, they also increase computational cost. Moreover, once a conversation exceeds the context limit, earlier 

parts may be truncated, leading to a loss of relevant information. 

By combining tokenization, embeddings, attention-driven context modeling, and probabilistic generation, 

ChatGPT can extend a user’s prompt in a way that appears coherent, contextually appropriate, and linguistically 

natural. However, these same mechanisms can also lead to limitations, such as producing plausible but inaccurate 

statements when relevant context is missing or misunderstood (Williamson & Prybutok, 2024). 

These NLP processes allow the model to turn raw text into meaningful, context-aware predictions. However, the 

success of this process depends heavily on the quality of the data it is trained on, a factor addressed in the following 

section. 

2.3. Data Preparation and Curation in LLM Development 

The creation of models like ChatGPT depends heavily on the collection, preparation, and management of 

large-scale training datasets. These datasets draw from a wide variety of sources, including books, academic 

articles, websites, code repositories, and other publicly accessible text, supplemented in some cases by licensed or 
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proprietary materials (The Authors Guild, 2023). The breadth and diversity of this data are intended to give the 

model exposure to many domains, writing styles, and contexts. 

The raw data are then extensively preprocessed before training. These include deleting redundant records, filtering 

inappropriate or low-quality material, formatting, and making the text machine-readable (Lee et al., 2022). In some 

instances, parts of the data are annotated with human or automated labels to focus fine-tuning on particular tasks, 

such as to follow instructions, minimize damaging outputs, or to fit particular domains (Balaskas et al., 2025). 

Beyond technical preparation, there is a growing emphasis on ethical sourcing and legal compliance in dataset 

creation. Most giant language models have been criticized due to reusing content without clear authorization of 

content creators, which is an issue of intellectual property and copyright infringement (Al-Busaidi et al., 2024). 

They should be able to work in and around detailed copyrights, licensing terms, and even terms of service 

restrictions, which vary between jurisdictions. Ethical considerations are also relevant when it comes to the 

inclusion of personal or sensitive data that, if not properly anonymized or excluded, can lead to privacy breaches 

and potential regulatory violations under frameworks such as the GDPR (Ducato, 2020). 

The effectiveness of the results of a large language model strongly depends on the quality, diversity, and 

representativeness of the training data that it is used with. This has the consequence of biasing coverage in some 

areas of knowledge, being less factual, and failing to generalize in underrepresented areas (Helm et al., 2024). On 

the other hand, the factual reliability, preventing damaging biases, preserving intellectual property, and increasing 

contexts in which the model functions successfully can be achieved with carefully assembled and legally 

non-problematic datasets. As public scrutiny increases, transparent documentation of dataset sources and collection 

methods is becoming an essential component of responsible AI development (Cheong, 2024). 

░ 3. ChatGPT Architecture & Model Design 

3.1. Transformer Architecture and the Self-Attention Mechanism 

The transformer architecture introduced as described by Lin et al. (2022) has been described as an architecture shift 

in the natural language processing area because recurrence and convolution processes have been substituted with 

self-attention as the basis of sequence modeling processes. Such a design allows models to learn both short- and 

long-range dependencies efficiently and overcome the limitation of requiring sequential processing inherent to 

recurrent neural networks (RNN) and long short-term memory networks (LSTM). As a further point, Lin et al. 

emphasize that a broad range of variants of transformers, commonly termed X-formers, have since been deployed, 

which covers application areas in natural language processing, computer vision, and audio processing, forming the 

basis for ongoing architectural innovations and future research directions. 

The architecture is structured as a multi-level layer-by-layer and falls into stacked encoder and decoder layers 

consisting of multi-head self-attention, position-wise feed-forward networks, residual connections, and layer 

normalization (Figure 3). The encoder projects the input embeddings, augmented with sinusoidal positional 

encodings to preserve word order, to low-dimensional contextualized representations, which are simpler but more 

accurate representations of the information present in the input. Conversely, the decoder includes masked 

multi-head self-attention, which makes it autoregressive in that attention can only take place on past generated 
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tokens. Such property is essential in text generation tasks where future tokens cannot be available in the process of 

prediction (Dong et al., 2019). 

A key innovation lies in the multi-head attention mechanism, in which queries, keys, and values are projected into 

multiple subspaces. This enables the respective heads of attention to specialize in focusing on a specific linguistic 

or semantic relation to gain an enhanced representational capacity (Zheng et al., 2025). The results of these heads 

are then concatenated and passed through feed-forward layers, with residual connections and normalization 

stabilizing the training and preventing gradient degradation in deep models (Bao et al., 2024). 

This modular combination of attention and feed-forward transformations allows transformers to be much more 

scalable with respect to the sizes of data and computer resources of different budgets. As such, transformer-based 

models are the foundation of state-of-the-art generative AI applications, like GPT, BERT, and their continuations, 

and perform better in a wide variety of natural language understanding and generation tasks (Bengesi et al., 2024). 

 

Figure 3. High-level diagram of the transformer architecture, showing the stacked encoder (left) and decoder 

(right) blocks. The blocks combine multi-head self-attention, feed-forward layers, residual connections, and 
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normalization. Through the process of encoding, the input embeddings with positional embeddings are converted 

into contextual representations and output sequentially with the use of masked multi-head attention through the 

decoder. It is the foundation of large language models that include ChatGPT. Large language models like GPT-3 

and GPT-4, upon which popular applications such as ChatGPT are built, require the transformer architecture 

[Source: Sajun et al. (2024)]. 

3.2. Pretraining Phase 

The pretraining phase is the resource-consuming and core component in the development of ChatGPT. At this 

level, the model is trained with enormous amounts of text of vast subjects, including literature, scientific literature, 

the web, and code repositories (Ray, 2023). Learning proceeds through a self-supervised process, in that the system 

has to predict the next element of a sequence based on its context. Formally, the model is trained to minimize the 

cross-entropy loss between the probability distribution over the predicted tokens and Tokens, as it, in fact, is 

observed (Konstantakos et al., 2024). 

With this paradigm of training, the model can deduce statistical patterns in language, not only at the basic level of 

syntax and grammar, but also at higher levels of semantics and discourse structure (Han et al., 2024). Consequently, 

the pretrained model develops general language ability and acquires masses of factual knowledge based on training 

corpora. Though potent, these capabilities are raw, biased, inconsistent, and any inherent risks of the raw data can 

be passed on through the learned representations of the model (Ferrara, 2023). 

Not only is the pretraining process particularly resource-intensive, often requiring weeks of TPUs or GPU clusters 

to complete (Schmidt & Hildebrandt, 2024), but it also causes issues of model and data reproducibility due to the 

long, probabilistic nature of the pretraining process (Nakkiran et al., 2023). Even with these costs, pretraining 

remains essential to the extent that it forms the basis upon which subsequent steps (i.e., supervised fine-tuning and 

reinforcement learning with human feedback (RLHF)) build model-specific and safety-aligned capabilities upon 

(Dahlgren Lindström et al., 2025). 

3.3. Fine-Tuning Phase 

Once pretraining establishes broad linguistic competence, the model undergoes fine-tuning to align its behavior 

with human expectations. The first step is supervised fine-tuning (SFT), where the pre-trained model is trained with 

a smaller but well-curated collection of prompts and high-quality responses, which were created by human experts 

(Punnaivanam & Velvizhy, 2024). This stage teaches the system to take its orders and come up with outputs that 

seem like outputs of a human being in terms of structure and style. In contrast to pretraining, which is data-hungry 

and unsupervised, SFT is data-efficient, supervised, and follows task-specific rules and guidelines (Wolfe, 2023). 

To further regularise alignment, reinforcement learning with human feedback (RL HF) is implemented. This 

involves sampling various possible candidate responses of the model, which are then ranked by human annotators 

on quality, helpfulness, and safety. These rankings are then trained into a reward model that then brings about the 

reinforcement learning optimization process of the language model in the use of Proximal Policy Optimization 

(PPO) (Rizki et al., 2025). LHF allows the system to outperform based on a purely static dataset by using human 

preference signals as direct input into the learning process.  
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Together, supervised fine-tuning and RLHF significantly enhance the model’s practical utility. The fine-tuned 

model generates not only syntactically valid text but also contextually relevant, safe, and user-aligned responses 

(Wolfe, 2023).  

However, this stage is not without limitations: annotator bias can influence preference data, and excessive 

optimization toward “safe” outputs may reduce creativity or specificity (Chen et al., 2023). Despite these 

challenges, fine-tuning remains essential for transforming a general-purpose pretrained model into an interactive 

system that reliably serves human users (Anisuzzaman et al., 2024). 

3.4. Model Scaling 

One of the defining features of ChatGPT’s effectiveness is the principle of scaling: systematically increasing the 

size of the model, the volume of training data, and the compute resources used. Empirical research on scaling laws 

has shown that as the number of parameters grows into the billions, language models achieve progressively lower 

loss values and demonstrate qualitatively new capabilities (Budnikov et al., 2024). These emergent abilities include 

complex reasoning, multilingual translation, long-context coherence, and more reliable generalization across 

domains, capabilities that smaller models fail to exhibit. 

Empirical scaling studies confirm these trends, demonstrating a predictable power-law relationship between model 

size, compute, and performance. As shown in Figure 4, training loss decreases predictably as model size increases, 

but only up to an optimal point determined by the compute budget. The isoFLOPs slices represent constant 

compute allocations, illustrating the trade-offs between allocating resources to larger models versus training them 

on more data. These results highlight the empirical scaling laws that underpin modern large language model 

development (1a3orn, 2022). 

Realizing such gains requires massive distributed infrastructure. Training is conducted across clusters of GPUs or 

TPUs using advanced optimization strategies (Aldoseri et al., 2023). Techniques such as mixed-precision training 

(FP16 or bfloat16 arithmetic) reduce memory consumption and accelerate computation, while parallelization 

methods, including data parallelism, tensor/model parallelism, and pipeline parallelism, enable efficient handling 

of billions of parameters. Without these strategies, training runs would be infeasible given hardware constraints. 

However, scaling also introduces significant challenges. Larger models demand exponentially greater energy and 

financial costs, raising concerns of accessibility and environmental impact (Alzoubi & Mishra, 2024). Inference 

latency becomes a practical bottleneck, as serving such models requires substantial memory and bandwidth. 

Moreover, scaling alone does not resolve issues of bias, factuality, or safety; in some cases, it may even amplify 

them. 

Going forward, scaling is expected to evolve beyond brute-force parameter growth. Research into sparse 

architectures (e.g., Mixture of Experts), efficient fine-tuning methods, and hardware–software co-optimization 

suggests a future in which models maintain or even improve performance while reducing training costs. Thus, 

while scaling remains central to ChatGPT’s success, sustainable innovation increasingly depends on balancing size 

with efficiency (Haefner et al., 2023). 
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Figure 4. IsoFLOPs scaling behavior of large language models. Training loss plotted against model parameters 

under fixed compute budgets (FLOPs). Each curve represents an isoFLOP slice, illustrating the trade-off between 

model size and training duration, with optimal performance achieved near the minima [Source: 1a3orn (2022)]. 

░ 4. Applications Across Domains 

4.1. Education and Knowledge Work 

ChatGPT and other large language models (LLMs) have quickly become revolutionary applications in education 

and professional knowledge work. In education, LLMs serve as intelligent tutoring systems, offering personalized 

feedback, interactive questions, and formative feedback to learners at scale (Sharma et al., 2025). In contrast to the 

traditional e-learning systems, the LLM can produce context-specific responses and examples specific to the 

learner, and dynamically scaffold difficult concepts. In other words, they can help students in solving mathematics 

problems by breaking them down into multiple steps or give some context on the background of a social science 

assignment. These adapting tutors are similar to human teachers in that they enhance the reach of tutoring to 

underrepresented groups and decompress educational systems (Kamalov et al., 2023). 

The LLMs used in knowledge work aid in improving productivity through information retrieval, summarization, 

and drafting of documents (Freire et al., 2024). Professionals can quickly conclude a quick reading of large reports, 

legal statements, or articles that may have a lot of pages. LLMs can support knowledge augmentation through draft 

generation, supporting creative thought, and offering alternative formulations of an argument (Qin, Chen, et al., 

2025). Notably, these systems are also multilingually accessible, which facilitates cross-linguistic communication 

and eliminates some of the obstacles within the globalized workplaces. Nevertheless, several issues are 

outstanding: excessive dependence on LLMs can lead to a loss of critical thinking abilities in students, and 

unverified outputs in a professional environment would only add misinformation or errors in areas that include law, 

policy, etc. Thus, their role is best conceptualized as a collaborative assistant, augmenting rather than replacing 

human judgment (Shahzad et al., 2025). 
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4.2. Healthcare and Clinical Decision Support 

One of the most promising yet sensitive areas of application of LLM is the field of healthcare. The LLMs have the 

potential to process patient information, incorporate medical knowledge, and present a list of possible diagnoses 

(Singhal et al., 2025). For instance, they have been tested in generating SOAP (Subjective, Objective, Assessment, 

Plan) notes, summarizing radiology reports, and supporting triage decisions (Delanerolle et al., 2025). Using 

biomedical corpora (e.g., PubMed, clinical notes) to train or fine-tune increases the accuracy of models trained on 

general-purpose (medical reasons, Renaudo et al., 2015). 

Beyond diagnostics, LLMs hold potential in patient-centered applications: a virtual health assistant to respond to 

basic health-related questions, provide pill reminders, and more. This saves time for physicians and enhances 

patient knowledge and compliance. In addition to their use in drug discovery and genomics, LLMs can search 

literature, generate protein-ligand models, and streamline hypothesis generation in biomedical research pipelines 

(Maity & Jyoti, 2025). 

Nonetheless, the healthcare domain raises acute risks. Hallucinated outputs, lack of accountability, and bias in 

training data can result in unsafe recommendations (Farhud & Zokaei, 2021). Ethical concerns regarding privacy 

(HIPAA/GDPR compliance), explainability, and liability must be addressed before widespread deployment in 

clinical workflows. Regulatory frameworks such as the FDA’s Software as a Medical Device (SaMD) guidance 

will play a central role in determining adoption. Overall, LLMs are positioned not as autonomous diagnosticians 

but as decision-support systems that extend clinician capacity while requiring stringent oversight (FDA, 2019). 

4.3. Business and Productivity 

In the business domain, ChatGPT serves as a general-purpose productivity accelerator across functions, including 

customer service, operations, marketing, and management. In customer engagement, conversational agents 

powered by LLMs provide 24/7 support, handle routine inquiries, and escalate complex issues to human agents 

(Abdelkader, 2023). This improves efficiency while maintaining natural, human-like interaction quality. In 

marketing and communications, LLMs generate campaign copy, tailor messaging for different audience segments, 

and even conduct A/B testing simulations of promotional content (Linkon et al., 2024). 

For knowledge workers, LLMs automate drafting of reports, meeting minutes, and email correspondence, 

significantly reducing cognitive load (Naqbi et al., 2024). In software engineering, code-oriented models (e.g., 

Codex, GitHub Copilot) accelerate development cycles by generating boilerplate code, suggesting optimizations, 

and supporting debugging (Moradi Dakhel et al., 2023). Similarly, in finance and business analysis, LLMs assist 

with data interpretation, scenario modeling, and natural-language querying of databases, thereby democratizing 

access to analytics for non-technical stakeholders (Filippo et al., 2024). 

However, integration into enterprise contexts requires addressing accuracy, intellectual property concerns, and 

security risks. Over-reliance on auto-generated outputs without verification may lead to reputational or financial 

harm (European Commission, 2025). Additionally, organizations must implement human-in-the-loop validation 

pipelines and establish governance policies for responsible AI deployment. When appropriately managed, LLMs 

serve as productivity amplifiers, reshaping workflows and enhancing decision-making across industries. 



 

Asian Journal of Basic Science & Research  

Volume 7, Issue 3, Pages 175-200, July-September 2025 
 

ISSN: 2582-5267                                                                   [187]                                                                             

4.4. Scientific Research Assistance 

Scientific research is another frontier where LLMs are proving indispensable. At the literature synthesis stage, 

LLMs can read thousands of articles in a short period of time and extract structured knowledge, but also discover 

new patterns of research in the field (Fabiano et al., 2024). Tools built on LLMs are increasingly used for 

systematic reviews, where they assist in screening abstracts, extracting metadata, and drafting summaries. In 

hypothesis generation, LLMs can highlight overlooked connections across disciplines, for instance, linking 

biological pathways of molecules conveying information to that of stress adaptation in plants or candidate 

gene-trait associations in crop enhancement (Abdel-Rehim et al., 2025). 

In experimental design and analysis, LLMs provide guidance on methodology, suggest statistical tests, and assist in 

writing code for data processing (e.g., R, Python scripts) (Coello et al., 2024). They are also integrated into 

computational pipelines, where they help interpret high-dimensional data in genomics, proteomics, and climate 

modeling (Yoosefzadeh-Najafabadi, 2025). For example, combining LLM-based reasoning with symbolic 

mathematics has shown promise in automating portions of theoretical physics research (Pantsar, 2025). 

Yet, the use of LLMs in research raises concerns of hallucination, citation fabrication, and over-automation (Ji et 

al., 2022). To maintain scientific integrity, outputs must be cross-validated with primary sources and human 

expertise. Moreover, biases in the training corpus risk amplifying dominant paradigms while overlooking minority 

or non-Western knowledge traditions. Still, when carefully supervised, LLMs act as research accelerators, 

augmenting human creativity and enabling faster, more integrative scientific discovery. 

Table 2. Empirical studies of ChatGPT and domain-specific LLM applications: benefits, risks, validation evidence. 

Domain Typical benefits Main risks/limitations Key studies (2022–2025) 

Education & 

Knowledge 

Work 

Personalized 

tutoring; faster 

learning & 

stronger 

engagement; 

high-quality 

writing feedback; 

boosts to 

knowledge-work

er output 

Hallucinations and 

factual errors; risk of 

over-reliance/skill 

atrophy; mixed or 

context-dependent 

learning gains 

AI tutoring RCT: An experimental study by 

Kestin et al. (2025) demonstrated that AI 

tutoring using ChatGPT achieved higher 

learning gains than traditional in-class active 

learning approaches. 

Systematic reviews: Recent syntheses (2024), 

including Deng et al. (2024), report that 

ChatGPT can improve academic performance, 

though outcomes vary across contexts and 

concerns about over-reliance remain. 

Knowledge work RCT: In a randomized 

controlled trial, Noy and Zhang (2023) found 

that ChatGPT significantly increased 

professional writing productivity and 

improved overall quality. 

Healthcare & 

Clinical 

Decision 

Support 

Exam-style 

clinical 

reasoning; 

medical QA with 

domain-tuned 

LLMs; drafting 

notes & 

Not ready for 

autonomous use; 

instruction sensitivity & 

brittleness; safety, bias, 

privacy; clinician 

de-skilling with 

over-reliance 

USMLE performance: Kung et al. (2023) 

reported that ChatGPT achieved at or near the 

passing threshold across multiple USMLE 

Step examinations, highlighting its potential 

for medical education but also exposing 

variability in domain-specific reasoning. 
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summarizing 

reports 

Med-PaLM 2: Singhal et al. (2025) 

demonstrated state-of-the-art performance on 

MedQA and other clinical benchmarks, though 

important limitations in safety and robustness 

remain. 

Limits & safety: A Nature Medicine analysis 

by Hager et al. (2024) emphasized that large 

language models are not yet suitable for 

autonomous clinical decision-making, citing 

risks related to reliability, explainability, and 

patient safety. 

De-skilling evidence: In a randomized 

controlled trial, Jeyaretnam (2025) reported 

that gastroenterologists using AI-assisted 

colonoscopy improved immediate detection 

rates but showed reduced performance when 

operating without AI support, raising concerns 

about clinician de-skilling. 

Business & 

Productivity 

Higher 

throughput in 

customer support; 

faster, better 

drafts; code 

generation & 

review; 

measurable 

quality gains for 

less-experienced 

staff 

Uneven effects across 

workers; potential 

quality dips for top 

performers; 

hallucinations/brand 

risk; data/IP exposure 

without governance 

Generative-AI assistant: Brynjolfsson et al. 

(2025) found that a generative AI–based 

customer support assistant increased agent 

productivity by approximately 14–15% in 

terms of resolved tickets per hour. 

Professional writing RCT: In a randomized 

controlled trial, Noy and Zhang (2023) 

reported that ChatGPT substantially improved 

the productivity and quality of mid-level 

professional writing tasks. 

Software development RCTs: Cui et al. 

(2024) demonstrated through enterprise-scale 

randomized trials that GitHub Copilot 

significantly accelerated software 

development workflows and improved coding 

efficiency. 

Scientific 

Research 

Assistance 

Faster literature 

synthesis & 

screening; 

hypothesis 

generation; 

autonomous 

planning/ 

execution of lab 

tasks; domain 

tool-use 

(chemistry, 

materials) 

Hallucinated 

claims/citations; 

reproducibility & 

provenance concerns; 

potential misuse in 

sensitive domains 

Autonomous lab agent: Boiko et al. (2023) 

introduced Coscientist, an autonomous 

laboratory agent capable of designing, 

planning, and executing chemistry 

experiments, demonstrating the feasibility of 

LLM-driven scientific automation. 

Chemistry agent: Bran et al. (2024) 

developed ChemCrow, an LLM integrated 

with domain-specific tools for chemical 

synthesis, drug discovery, and materials 

science, showing improved performance in 

complex scientific tasks. 

Evidence synthesis: Lai et al. (2025) reported 

that LLMs achieved promising accuracy and 

efficiency in risk-of-bias assessment and data 

extraction for systematic reviews, highlighting 

their potential role in accelerating evidence 

synthesis. 
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░ 5. Limitations and Challenges 

Despite their wide-ranging applications, large language models such as ChatGPT face important limitations and 

challenges that constrain their safe and reliable use. The most notable issue is the hallucination that results in fluent, 

yet wrong information produced by the model (Ji et al., 2022). These mistakes are usually presented with 

unnecessary assurance and are thus only hard to identify with the non-expert user. These hallucinations have the 

potential to compromise faith in education, medical, and scientific situations where accuracy is essential. 

Important as well is the consideration of bias and ethics. Since training corpora are rife with imbalances of groups 

of various nations, societies, and demographic subsets, the models will risk reproducing stereotypes or legitimizing 

inequities (Blodgett et al., 2020). Biasness may potentially sideline the voice of underrepresented groups and 

exacerbate the pre-existing inequalities, and therefore, high-stakes tasks like hiring, lending, or treating patients 

cannot be applied (Obermeyer et al., 2019). 

Another challenge is the lack of explainability. LLMs function as complex black boxes, producing outputs without 

transparent reasoning pathways (Marques-Silva & Ignatiev, 2023). This opacity complicates auditing, reduces user 

trust, and poses barriers to regulatory acceptance in sensitive fields like healthcare, finance, and law. 

Performance is also limited by the quality of its data. The models are learned based on static data, so they may have 

unreliable knowledge and have blind spots in new spheres (Schneider et al., 2024). Moreover, the training data can 

be biased, of low quality, or not representative enough of different global knowledge traditions, and limit model 

generalization (Ferrara, 2023). 

Lastly, issues on the environmental impact of scaling are on the rise. The training of state-of-the-art LLMs needs 

enormous computing resources, and the energy used generates a substantial number of carbon emissions (Strubell 

et al., 2020). The tension between performance and sustainable ecological footprints has emerged as a critical 

discussion in AI research, as it leads to various appeals to more efficient and environmentally-friendly architectures 

and practices of AI. 

░ 6. Ongoing Improvements and Research Gaps 

The achieved capabilities of large language models, like ChatGPT, have been remarkable, but a lot of research is 

underway to overcome current limitations and push the functionality. 

A significant trend is the emergence of multi-modal modeling to include text and images with audio, video, and 

code. Such systems can interpret visual questions, diagnostic images, and clinical notes, or speech and text 

information together by combining modalities. New architectures such as GPT-4V and Gemini demonstrate that 

multimodality can be used in a much broader variety of contexts than just in some form of text-based interaction 

(OpenAI, 2023). 

Another research direction is retrieval-augmented generation (RAG). RAG pipelines merge external knowledge 

bases or live web retrieval since pretrained models are limited by the static nature of the training corpora, and thus, 

outdated information cannot be used (Lewis et al., 2020). This minimizes hallucinations and factual anchoring, and 

enables models to stay fresh without complete retraining. 
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Domain-specific fine-tuning is also gaining importance. By fine-tuning general-purpose LLMs on specialised data, 

the models can have greater reliability in medicine, law, finance, and other expert-driven areas. Examples include 

Med-PaLM, used in clinical reasoning and LawGPT, which is used in legal analysis (Singhal et al., 2025). 

However, fine-tuning complicates the task of being generative and, at the same time, being able to adapt to the 

robustness of the domain. 

Advances are also being made in interpretability research, towards making LLM decision-making transparent. 

Such methods as probing into hidden states, mechanistic interpretability, and causal investigation of attention heads 

are being developed to determine how models lead to outputs (Belinkov & Glass, 2019). Explainability should be 

enhanced as necessary, since it is a prerequisite to trust, introduction into regulation, and scientific comprehension 

of the properties of emergent capabilities. 

Finally, there is a shift to energy-efficient training and deployment (also called green AI). Other strategies like 

sparse architectures, parameter-efficient fine-tuning, quantization, and better hardware-software co-design would 

help minimize the carbon impact of training, which would not require the trade-off between performance and 

carbon footprint of training. Sustainability is becoming an ever more understood aspect of ethical AI creation. 

Taken together, these advances highlight both active areas of innovation and the research gaps that remain. Future 

work must balance expanding functionality with safety, interpretability, and sustainability, ensuring that LLMs 

evolve into trustworthy and accessible tools across domains. 

Table 3. Proposed improvements in large language models, with their technical basis and associated challenges. 

Proposed Improvement Technical Basis Key Challenges 

Multi-modal 

capabilities (text, image, 

audio, code) 

Integration of transformer backbones 

with vision encoders, speech recognition, 

and code parsers (e.g., GPT-4V, Gemini) 

High computational cost; difficulty in 

aligning modalities; bias transfer across 

domains 

Retrieval-Augmented 

Generation (RAG) 

Combining LLMs with external retrieval 

modules (databases, search engines) to 

ground responses in real-time knowledge 

Reliability of retrieval sources; latency in 

large-scale deployment; risk of 

propagating external misinformation 

Domain-specific 

fine-tuning (medicine, 

law, finance) 

Parameter-efficient fine-tuning (LoRA, 

adapters), supervised alignment on 

specialized datasets (e.g., Med-PaLM, 

LawGPT) 

Data scarcity and privacy constraints; 

risk of overfitting to niche corpora; 

reduced generalization 

Interpretability 

research 

Mechanistic interpretability, probing 

hidden states, and causal tracing of 

attention patterns 

Limited scalability to very large models; 

lack of consensus on evaluation metrics; 

risk of oversimplification 

Energy-efficient 

training (“Green AI”) 

Sparse architectures (Mixture of 

Experts), quantization, distillation, 

hardware–software co-optimization 

Trade-off between efficiency and 

accuracy; hardware accessibility; 

measuring and standardizing carbon 

footprint 
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Note: Data compiled and adapted from OpenAI (2023), Lewis et al. (2020), Singhal et al. (2023), Belinkov and 

Glass (2019), Strubell et al. (2020), and Related sources. 

░ 7. The Future of ChatGPT and Generative AI 

Large language models are currently showing trends towards moving beyond conversational agents to more robust, 

end-to-end tool-using systems. Integration with agents enables models to execute chains of reasoning, interface 

with external APIs, and/or perform multi-step tasks in real or simulated worlds. Initial systems like AutoGPT and 

LangChain demonstrate how LLMs, memory, planning, and external apps make them a system of any general 

purpose (Github, 2023). This integration points toward a future in which conversational models act as cognitive 

operating systems, orchestrating workflows across domains from personal productivity to industrial automation. 

Another critical frontier is the convergence of LLMs with data science and analytics. Current models excel at 

natural language reasoning but lack direct integration with structured data streams. By bridging this gap, future 

systems could perform real-time data querying, statistical inference, and decision optimization directly within 

conversational interfaces (Yao et al., 2024). Such integration would allow professionals in fields such as finance, 

logistics, or healthcare to engage with complex datasets through natural dialogue, transforming LLMs into 

interactive data science partners rather than static information providers. 

Hybrid architectures combining neural and symbolic approaches are also likely to define the next wave of 

generative AI. While transformer-based models capture statistical regularities, they struggle with logical 

consistency and compositional reasoning. Integrating symbolic reasoning engines or knowledge graphs with neural 

networks could enhance reliability, factual grounding, and mathematical or logical problem-solving (Garcez & 

Lamb, 2023). Research into neuro-symbolic AI, program induction, and differentiable reasoning modules suggests 

that hybrid systems may overcome current weaknesses of purely statistical LLMs, especially in domains requiring 

formal reasoning or explainability. 

Finally, the future of generative AI will be shaped by governance, regulation, and ethical oversight. As models gain 

autonomy and permeate critical sectors, questions of accountability, safety, intellectual property, and societal 

impact will grow more pressing. Policymakers and researchers are already debating frameworks for AI auditing, 

transparency standards, watermarking, and responsible deployment (European Commission, 2025). International 

coordination will be essential to balance innovation with safeguards, ensuring that generative AI develops as a 

trustworthy public good rather than a source of unchecked risk. 

Taken together, these trajectories suggest that the future of ChatGPT and similar systems will not be defined by 

scale alone but by deeper integration with tools, reasoning systems, structured data, and governance frameworks. 

The next generation of generative AI is thus poised to become not just more powerful, but also more interactive, 

interpretable, and accountable. 

░ 8. Conclusion 

ChatGPT exemplifies both the transformative potential and the unresolved challenges of generative AI. Its success 

across education, healthcare, business, and research reflects advances in pretraining, fine-tuning, and scaling, yet 
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persistent issues of hallucination, bias, opacity, data limits, and environmental cost reveal the limits of scale alone. 

As a benchmark system, ChatGPT highlights the urgent need for progress in interpretability, domain-specific 

alignment, sustainable training, and governance, ensuring that future models evolve to be not only more capable but 

also more reliable, transparent, and socially responsible. 

░ 9. Recommendations 

1) Prioritize interpretability: Readiness on mechanical interpretability and unbiased assessment structures will be 

of utmost value in building user trust and regulatory acceptance. 

2) Adopt domain-specific alignment: Fine-tune models responsibly to medicine, law, and other high-stakes 

domains with privacy-respecting curated datasets. 

3) Advance sustainable AI practices: Develop energy-efficient architectures and employ eco-friendly AI 

procedures to minimize the CO2 output of training and inference. 

4) Strengthen governance and regulation: Establish global standards for accountability, auditing, watermarking, 

and good deployment. 

5) Promote human–AI collaboration: Position LLMs as decision-support agents and not as decision-making 

replacements, noting that oversight on occurrences linked to sensitive applications is required. 

6) Expand inclusivity in training data: Increase the amount of coverage in low-resource languages and different 

cultural settings to minimize bias and open training data up to a greater amount of diversity. 

7) Encourage multi-modal and hybrid systems: Support multi-modality such as text, image, audio and symbolic 

reasoning to make applications richer and more reliable in the real world. 
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